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A fixed-point equation on an infinite-dimensional space is proposed as an alter- 
native to the usual definition of the infinite-volume limit in discrete lattice spin 
systems in the high-temperature phase. It is argued heuristically that the free 
energy and correlation functions one obtains by solving this equation agree with 
the usual definitions of these quantities. A theorem is then proved that says that 
if a certain finite-volume condition is satisfied, then this fixed-point equation has 
a solution and the resulting free energy is analytic in the parameters in the 
Hamiltonian. For particular values of the temperature this finite-volume condi- 
tion may be checked with the help of a computer. The two-dimensional Ising 
model is considered as a test case, and it is shown that the finite-volume condi- 
tion is satisfied for/3 ~< 0.77/3cr,tlc~l. 

KEY WORDS: Finite volume condition; high temperature phase; lattice spin 
system. 

1. I N T R O D U C T I O N  

Given  a lat t ice spin system at sufficiently high tempera ture ,  there are 
var ious  methods ,  e.g., h igh - t empera tu re  expans ions  or  the D o b r u s h i n  
uniqueness  theorem,  for p roving  it has all the p roper t ies  one would  expect.  
Suppose ,  however ,  tha t  we are  given a lat t ice spin system at some tem- 
pe ra tu re  which we suspect  is above  the cri t ical  t empera ture ,  bu t  which is 
no t  sufficiently high tha t  the usual  me thods  apply.  Is there some finite- 
vo lume ca lcu la t ion  one can do  tha t  would  prove  tha t  the system is in the 
h igh - t empera tu re  phase? One  would  expect  tha t  the a m o u n t  of ca lcula t ion  
requi red  to show tha t  the system is in the h igh- tempera tu re  phase  would  
increase  as one app roaches  the cri t ical  t empera ture .  Consequent ly ,  such a 
m e t h o d  will never yields results val id  in the entire h igh - t empera tu re  phase,  
only  some subset  of it, Thus,  one should  ask why a m e t h o d  tha t  works  in 

1 Department of Mathematics, University of Arizona, Tucson, Arizona 85721. 

195 

0022-4715/90/0400-0195506.00/0 �9 1990 Plenum Publishing Corporation 



196 Kennedy 

90 % of the high-temperature region is of any more interest than a method 
that works in only 25 % of the high-temperature region. The answer is that 
there are important problems that can be cast in the form of showing that 
a particular statistical mechanical system is in the high-temperature phase 
even though the usual methods do not apply. (By the phrase "high-tem- 
perature phase" I mean any phase in which there is a unique Gibbs state 
and exponentially decaying correlations. A system can be in such a phase 
because the temperature is high, but it can also be in such a phase when 
the temperature is not high.) 

The best known example of such a problem is the work of Dobrushin 
etal.  (6~ on the Ising antiferromagnet in an external magnetic field. 
Dobrushin and Shlosman (5) have developed a sequence of finite-volume 
conditions, the verification of any one of which implies that the system is 
in the high-temperature phase. For the Ising antiferromagnet in a magnetic 
field the question of whether or not there is a reentrant phase transition as 
one increases the temperature can be reduced to showing that a particular 
statistical mechanical system is in the high-temperature phase. They were 
able to verify (6) one of the Dobrushin-Shlosman finite-volume conditions 
for this system with the help of a computer and thereby show that there is 
not a reentrant phase transition for the Ising antiferromagnet. 

An important unsolved problem in this category is the majority rule 
renormalization group approach to critical phenomena in classical lattice 
spin systems. (12) In this implementation of the renormalization group for 
Ising-like models, the value of the block spin is defined to be the sign of the 
sum of the spins in the block. Hence the renormalization group map sends 
a Hamiltonian for Ising spins (i.e., spins which can only be + 1) into 
another Hamiltonian for Ising spins. The numerical advantages of such a 
scheme are obvious, and indeed this map has been studied extensively 
numerically. The only rigorous work on this map has concerned regions of 
the parameter space far from the critical point. It is not even known that 
the map is well defined when the starting system is near the critical point  
In fact, there is strong evidence that the map is not well defined for all 
Hamiltonians. (4,7-1o) 

The precise definition of the map is as follows. Let H(o-) be some 
Hamiltonian for lsing-like spins. Divide the lattice into 3 by 3 blocks (to 
take a particular implementation of the map) and associate a block spin 
which also takes the values _ 1 to each block. Fix a configuration of these 
block spins and sum over all the original spins subject to the constraint 
that in each block the majority of the original spins agrees with the block 
spin. This constrained partition function will be a function of the block 
spins, so we write it as exp[H(6)] ,  where 5 denotes the block spins. This 
map from H to /~ is the renormalization group map. Of course, the above 
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procedure requires taking an infinite-volume limit, and so this map is not 
a priori well defined. The folklore of the renormalization group is that even 
if the starting Hamiltonian H is precisely at the critical point, if we fix a 
choice of block spins # and then consider the spin system in which we sum 
only over those spin configurations that satisfy the majority rule, then this 
constrained spin system should be in a high-temperature phase. In other 
words, introducing the block spins should make the correlation length 
finite. The critical nature of the starting Hamiltonian will manifest itself as 
one iterates the map. Indeed, if the starting Hamiltonian is critical, then 
under iteration it should be driven to a fixed point for the renormalization 
group map. Methods that could handle systems which are in the high-tem- 
perature phase but outside the region where the usual high-temperature 
methods apply are precisely what is needed to establish the existence of this 
map. 

Another example of such a problem concerns the ground states of a 
certain class of quantum spin systems. ~ In these quantum spin systems the 
ground state can be written down explicitly in terms of valence bonds, but 
it is not easy to determine the properties of the ground state. Arovas 
eta/. (3) showed that these quantum ground states have a representation in 
terms of a classical system at nonzero temperature. Showing that the 
ground state is disordered, which is believed to be the case for some of the 
models, then amounts to showing that this classical system is in the high- 
temperature phase. For one particular model, the spin-3/2 model on the 
hexagonal lattice, Kennedy et al. (n~ were able to do this using the usual 
polymer expansion and a computer. However, the other models which we 
expect to have disordered ground states are outside the region where the 
convergence of the polymer expansion can be proved. 

As mentioned earlier, Dobrushin and Shlosman have developed a 
sequence of finite-volume conditions, any one of which implies that the 
model is in the high-temperature phase. Moreover, for most discrete spin 
systems if the temperature is above the critical temperature, then their 
finite-volume condition should be satisfied for sufficiently large volumes. 
From a theoretical point of view this solves the problem posed at the start 
of the introduction. However, from a practical point of view it should be 
emphasized that if the method requires, that one do a computation which 
involves all the spin configurations in the finite volume, then since the 
number of these spin configurations grows with the length L of the volume 
as qC~ (d is the number of dimensions, q is the number of spin states), any 
such method will be restricted to a small volume and hence to systems with 
a fairly short correlation length. In our method the number of dimensions 
is effectively reduced by one, which greatly increases the feasibility of 
the required finite-volume calculations. As a test case, we have carried 
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out computer calculations on a Sun workstation for the two-dimensional 
Ising model. We were able to verify our finite-volume condition for 

fl ~< 0.77flcritical. 
For  a general class of ferromagnetic models, Aizenman (2) has shown 

that there is a sequence of finite-volume calculations which yield upper and 
lower bounds on the critical temperature which converge to the critical 
temperature as the volume increases. A sequence of convergent upper 
bounds had been found earlier by Simon. (13/ While these results are quite 
strong, they do not apply to arbitrary discrete spin systems. 

The heart of our method is to abandon the usual definitions of the 
infinite-volume limit and replace them with a fixed-point equation on an 
infinite-dimensional space. In Section 2 we will give a heuristic derivation 
of this fixed-point equation. We do not prove that this fixed-point equation 
is equivalent to the usual definitions of the infinite-volume limit. For very 
high temperatures it should be possible to use high-temperature expansions 
to prove this by putting the arguments of Section 2 on a rigorous footing. 
In Section 3 we prove a theorem which says that if a certain finite-volume 
condition is satisfied, then the fixed-point equation has a solution and the 
resulting free energy is analytic in the parameters in the Hamiltonian. This 
finite-volume condition is then checked numerically for several values of ft. 
We do not prove that the solution is unique, but see the remark following 
the proof of Theorem 3.4. In Section 4 we derive a better fixed-point equa- 
tion and show that there is also a finite-volume condition that implies that 
it has a solution. In Section 5 we show how to extract the correlation func- 
tions from our fixed-point equation and show that they, too, are analytic 
in the parameters in the Hamiltonian. 

The remainder of the paper deals exclusively with the two-dimensional 
Ising model, so we should comment on the extent to which the methods 
developed here apply to some of the problems we have discussed. We will 
make extensive use of the fact that for Ising spins any function of the spins 
~, in a finite volume V can be written in a unique way as ~ w c(W) ~(W), 
where W is summed over all subsets of V, a(W) denotes I-Ii~ w ai, and the 
c(W) are constants. This can be thought of as a Fourier transform on Z/2, 
and easily generalizes to any discrete spin system. The generalization from 
two to higher dimensions is also straightforward. Thus, our restriction to 
the two-dimensional Ising model rather than a general discrete spin system 
in an arbitrary number of dimensions is for purely pedagogical reasons. 

It is not obvious how to apply the methods of this paper to the 
majority rule transformation. It can be done, and we have done some 
preliminary numerical work which reproduces the usual picture of the 
renormalization group flow. Unfortunately, we have no rigorous results for 
temperatures close to the critical temperature. (It should be noted that for 
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the renormalization group transformation our method does not completely 
reduce the number of dimensions by one.) 

For  the special quantum spin systems whose ground states have a 
classical representation we need a method which applies to polymer 
systems. We do not know yet how to use the ideas here to develop such 
a method. For  a general quantum spin system one can try to write it as a 
classical system in one higher dimension using a Feyman-Kac  formula. 
This extra dimension will be continuous rather than discrete and so the 
methods presented here will require further development before they can be 
applied to such systems. The resulting classical system will in general have 
complex parameters in the Hamiltonian. Unlike probabilistic methods, our 
methods work for such Hamiltonians. 

Finally, since we do not prove that our definition of the infinite- 
volume limit agrees with the usual one, we should comment on exactly 
what our method proves for a discrete spin model with the infinite-volume 
limit defined in the usual manner. The free energy that we define will be 
shown to be an analytic function of/3 in some region containing/3 = 0. If 
one can indeed use high-temperature expansions to prove that our defini- 
tion of the free energy agrees with the usual definition at high enough tem- 
peratures, then we will have defined an analytic function which agrees with 
the usual free energy in a neighborhood of/3 = 0. This would then imply 
that either there is a temperature at which the usual free energy is not 
analytic, but none of its derivatives blow up, or the usual free energy is 
analytic in a region at least as large as the region of analyticity of our free 
energy. The same remarks apply to the correlation functions. 

2. T H E  F I X E D - P O I N T  E Q U A T I O N  

In this section we will derive the fixed-point equation in a heuristic 
fashion. The arguments in this section are not meant to be rigorous. Our 
purpose is to convince the reader at a heuristic level that the thermo- 
dynamic quantities, e.g., the free energy, that we obtain by solving 
the fixed-point equation are the same as those obtained from the usual 
definitions. 

Consider the finite volume shown in Fig. 1. If we include in the 
Hamiltonian the terms that couple the interior of this region to the exterior, 
then the free energy for this region will be a function of the boundary spins. 
Any function of these spins can be written as a linear combination of the 
functions ~r(V), where a ( V ) = I ~ i ~ v c r  i. Thus, 

ln(Z) = ~  c(V) or(V) (2.1) 
V 
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Fig .  1. T h e  f in i te  v o l u m e  used  in  the  heu r i s t i c  d e r i v a t i o n  o f  the  f i x e d - p o i n t  e q u a t i o n .  

where V is summed over all subsets of the set of boundary sites. If the tem- 
perature is above the critical temperature, then the coefficients c(V) should 
decay as V grows. We assume that the volume in Fig. 1 is large and restrict 
our attention to the terms in (2.1) that are localized near the kink in the 
boundary. In Fig. 2 we have redrawn the kink and explicitly labeled the 
boundary spins. The free energy does not depend on a 1, but we have 
included this spin for later use. 

Now consider what happens when we sum over the spin Oo. There are 
two terms in the Hamiltonian that involve ao and do not involve any of the 
spins which have already been summed out, namely, flaoal and / ~ O ' 0 a  1 . 

Define {(W) by 

] ,22  
In this equation V is summed over all finite subsets which do not contain 
- 1 ,  W is summed over all finite subsets which do not contain 0. If our 
volume is very large so that the distance from the kink to the top and 
bot tom of the volume is large, then the free energy we obtain by summing 
over ~ro should be essentially the same function of the boundary spins near 
the kink as the free energy before summing over ao; we need only relabel 
the spins appropriately. Thus, ~(W) should be equal to c(V) if V equals W 



High-Temperature Phase of Lattice Spin Systems 201 

o 5  

e 4  

o 3  

e 2  

|  

oO | - 1  

�9 - 2  

�9 - 3  

�9 - 4  

�9 - 5  

Fig. 2. An enlarged view of the kink in the boundary of the finite volume of Fig. l. Only the 
boundary sites are shown. The spin at site 0 will be summed over next. 

shifted by one lattice spacing. For  example, 8(1, 2) should be equal to 
c(0, 1). In general, we should have 

8 (W+ 1)=  c(W) (2.3) 

where W +  1 = { i+  1: i s  W}. This equality should be exact in the infinite- 
volume limit. 

In Eq. (2.2) there are many terms c(V) a(V) which do not involve ao. 
If we define f ( W )  by 

~ e x p  I ~ c(V) cr(V)+fl~o~l +fl~o~-, 1 
o0 V : O ~  V 

1 
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then g(W) is just c(W)+f(W).  If - I ~ W ,  then there is no c(W) in 
Eq. (2.2), so g(W)just equals f(W). To summarize, 

g( W) = ~ c( W) + f ( W), - I C W (2.5) 
~f(W), - 1 ~ W 

Combining (2.3) and (2.5), we have 

c ( W ) = ~ c ( W + l ) + f ( W + l ) ,  - 2 ~ W  (2.6) 
I f ( W +  1), - 2 ~  W 

In this equation W can be any finite subset which does not contain -1 .  
Thus far all we have done is formulate a transfer matrix approach. 

Equation (2.6) is already a fixed-point equation for the c(V)'s. We will 
improve this equation by eliminating all the c( V)'s with 0 r V. We proceed 
by examples. 

For W= {0, 1} and its translates {1, 2}, {2, 3),..., Eq. (2.6)yields 

c(0, 1)= c(1, 2 )+f (1 ,  2) 

c(1, 2) = c(2, 3) +/ (2 ,  3) 

Summing these equations, we obtain 

c(0, 1)= ~ f(t, t+ 1 ) + c ( ~ ,  ~ + 1) (2.7) 
t = l  

where c(~,  ~ + 1) is short-hand for the limit as t ~ ~ of c(t, t+ 1). 
If we apply Eq. (2.6) to the sets { -1 ,  -2} ,  { -2 ,  -3},..., we obtain 

c ( -3 ,  - 2 ) = f ( - 2 ,  - 1 )  

c ( -4 ,  - 3 ) = c ( - 3 ,  - 2 ) + / ( - 3 ,  - 2 )  

c ( -5 ,  - 4 ) = c ( - 4 ,  - 3 ) + f ( - 4 ,  - 3 )  

These equations give 
2 

c ( - o o , - o v + l ) =  ~ f ( t , t + l )  (2.8) 
t =  - -oo  

As we move away from the kink the two pieces of the right boundary look 
the same. Hence c(o% c~ + 1 ) = c( - 0% - oo + 1 ). Combining this equation 
with (2.7) and (2.8) yields 

c(0, 1)= ~ f(t, t+ 1) (2.9) 
t : ~ O , - -  1 
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Since f ( W )  only depends on the c(V) with 0 e V, we have succeeded in 
obtaining an equation for c(0, 1) which depends only on the c(V) with 
0eV.  

For any W which only contains nonnegative sites the argument above 
yields 

c (W)= ~ f (W+t) (2.10) 
t : W  

W +  t denotes the set { i+ t: ie  W} and t: W means that t is summed from 
- ~  to oo except for the values - k ,  - k  + l,..., - 1 ,  0, where k is the 
largest element of W. Note that the t over which we sum can be charac- 
terized by the following two conditions: 

(i) 06(W+t). 
(ii) W +  t has the same geometric shape as W. 

For sets W which contain at least one negative site the resulting equa- 
tions are slightly different. In this case we obtain a finite set of equations. 
For example, consider {0, - 4 } .  Equation (2.6) yields 

c(0, - 4 ) =  c(1, - 3 ) + f ( 1 ,  - 3 )  

c(1, - 3 ) =  c(2, - 2 ) + / ( 2 ,  - 2 )  

c(2, - 2 ) = f ( 3 ,  - 1 )  

Thus 

c(0, - 4 ) = f ( 1 ,  - 3 )  + f (2 ,  - 2 ) + f ( 3 ,  - 1 )  

Note that this equation is still given by Eq. (2.10) with t: W defined by con- 
ditions (i) and (ii) above. The same argument shows that Eq. (2.10) applies 
for any Wwhich contains a negative site. Thus, Eq. (2.10) holds for any W. 

Equation (2.10) is a fixed-point equation for the coefficients 
{c( V): 0 e V, - 1 q~ V}. We denote this set of coefficients by c. The functions 

f(W) depend on c and on /~. When we need to make this dependence 
explicit, we will write f (  W, c,/3). Now define 

F(W,c,~)= Z f(W+t,c,~) (2.11) 
t: W 

Then the fixed-point equation for c is 

F(W, c, fl)=c(W) (2.12) 

This equation must hold for all W which contain 0 and do not contain - 1. 
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The solution of this equation will depend on/3, and when we need to make 
this dependence explicit, we will write c(/~). 

How do we obtain the free energy per site in the infinite-volume limit 
from the fixed-point equation? Consider Eq. (2.4). In the right side the sum 
over W includes the term where W is the empty set, i.e., f ( ~ ) .  This term 
is the free energy per site. Thus the free energy per site e q u a l s f ( ~ ,  c(/3),/3), 
where c(/3) is the solution of (2.12). 

3. EXISTENCE OF A SOLUTION 

In this section we will prove that Eq. (2.12) has a fixed point if a 
certain finite-volume condition is satisfied. We must first give a rigorous 
definition of F(c). If g(V) is a real-valued function on the finite subsets V 
of { .... - 2 , - 1 , 0 , 1 , 2 , . . . }  such that Zvlg(V)t<oo, then Zvg(V)a(V) 
defines a function g(a). We define 

IIg/I = Y~ Ig(v)l (3.1) 
v 

We will only allow c's with finite [Icll in Eq. (2.12). The c's that occur in 
Eq. (2.12) have an additional property: c(V):~ 0 only for V such that 0 ~ V. 
The Banach space in which we look for a solution to the fixed-point equa- 
tion is the set of c's with this property and finite Ilcll. We will show that 
F(c) and its Jacobian DF(c) are defined and continuous on an open subset 
of this Banach space. We will use the norm (2.12) both for c's in this 
Banach space and for g's which may have g(V) r 0 for finite subsets V that 
do not contain 0. 

Equation (2.4) can be formally rewritten as 

'+ ]} f ( W ) = ~  ~(W)ln exp ~ c(V) a(V)+~aoal+/3Croa_l 
~ a O  V : O ~  V, - - I  C V 

(3.2) 

The sum over a is over all spin configurations a on the sites { .... - 2 ,  - 1 ,  
1, 2, 3,... }, and the 1/N normalizes this sum. Of course, this sum is infinite, 
so the above equation is not yet a rigorous definition o f f (W) .  We will say 
that c has finite support if there is a finite set S such that c(V) ~ 0 implies 
that V c  S. For  c with finite support, Eq. (3.2) is well defined, since we can 
replace the sum over a by the sum over just the spin configurations on the 
set S. Hence F(c) is well defined for c with finite support. We will initially 
work only with e's with finite support. Then we will extend our definitions 
and bounds to an open subset in the space of e's. 

Let DF(c) denote the Jacobian of F at c. Its matrix elements are 
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OF( V)/&( W), 0 E V, 0 ~ W. Since we are using the l ~ norm, the operator 
norm of DF(c) is easily bounded by 

OF(V) 
IIDF(c)[I ~< sup ~" &(W) (3.3) 

W : 0 ~ W  V : O ~ V  

From (2.11) we have 

OF(V) - V Of(V+ t) 
Oc( W) ,(-"~ &( W) 

For a function g(c) on spin configurations c, define 

( g ) = Z - t ~ g ( a ) e x p l  ~" c(V) a(V)+fiCoC~+flCoC ,~, (3.4) 
rs 0 V:O~ V, 16 V 

where Z is defined by ( 1 )  = 1. This expectation depends on c. When we 
need to make this dependence explicit, we will write ( - ) c .  For  the moment 
( g ) c  is only defined for c with finite support. Equation (3.2) now implies 

Of(V+t) 1 
&(W) ~ c ( V + t ) ( c ( W ) )  

The quantity ( c 0 )  is a function of the spins ..., c 2, o 1, 01, c2,.., and 
so can be written as 

(Co>-- Z 
U : O C U  

where the numbers d(U) are given by 

d(V) c(U) 

d(V) =--~.(U)(co) 

If c has finite support, these equations are well defined and d(U) is nonzero 
for only finitely many U. Now 

~f(v+ t) 
&(w) -d((v+t) A (w\{o})) 

where the symmetric difference A A B is defined to be (A w B)\(A ~ B). 
This implies 

or(v) 
&(w)-  2 d((v+ 0 zx (w\{o})) 

t: V 
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and so 

0F(V) 
Z ~ <~ Z Z Id((V+t) • (W\{0})) l  

V : O E  V V:OE V t: V 

This inequality and the bound (3.3) on IIDF(c)II imply 

IIDF(c)ll~sup ~ ~, Id((V+t) A (W\{O}))I 
W V : O ~ V  t : V  

= s u p  ~ Id(U A (W\{0})) l  
W U:O4~U 

= Y~ Id(g)l (35) 
U:O(sU 

We have used the fact that the sum over V: 0 e V and t: V is in one-to-one 
correspondence with the sum over U : 0 r  U, the correspondence being 
U = V+  t. Then we have used the fact that as U ranges over all finite sub- 
sets not containing 0, U A ( W \ { 0 } )  ranges over the same collection of 
sets. If we think of ( a 0 )  as a function of the boundary spins, then the last 
sum in (3.5) is just the norm of this function. We have proved the following 

lemma. 

Lemma 3.1. For c with finite support, 

IIDF(c)II ~ 
U:Or U 

It is convenient to define 

Id(g)l = II (O-o)11 

D(c)= ~ Id(U)l= [1(~o)11 (3.6) 
U:OCU 

In the following we will restrict our attention to the following open subset 
of the Banach space: 

O = {c: c = Co + 6 for some Co and 6 

such that Co has finite support, 

11,511 < l n 2 ,  D(co) + dll6ll) < 1} 

where 

e(x) = 2(e x - 1)/(2 - e x) (3.7) 

The expression for e(ll6ll) is such that e(]1611)--+0 as ll61l-,0. Note that O 
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includes all c with finite support such that D(c)< 1. We will show that 
these c are dense in O. 

The next lemma will be useful in bounding ]lDf(c + (5)- DF(c)I]. 

I . e m m a  3.2. Let g be any function of o with Hg]] < oo. If c has finite 
support and D(c)< 1, then 

( g ) c ~  < ![gl[ (3.8) 

If cl,  c2 have finite support, D(cl) < 1, D(c2) < 1, and ][cl - CRll < In 2, then 

II ( g ) q  - (g)c2l l  ~ ~( lice - c2]l) II Nil (3.9) 
and 

ID(Cl)--D(c2)] ~< g( l lc l -  Czll) (3.10) 

The set of c with finite support and D(c) < 1 is dense in O. Thus, the defini- 
tion of ( g ) c  extends in a unique continuous way to all ceO, and (3.8) 
holds for all ceO and (3.9) holds for all Cl, c2~0 such that NCl-C21F < 
In 2. 

Proof. To prove (3.8), it suffices to show II(~(W))cll ~< 1. If 0r  W, 
then (o (W))~  = o(W) and I[ (a(W))~11 is just 1. If 0 ~ W, then 

(~(w)) = (~o> ,,(w\ {0})=Y~ d(u) G(v A (w\  {0}) 
U 

and so rl(a(w)),ll <~D(c)~ 1. 
To prove (3.9), it also suffices to consider the case where g = a(W). Let 

c--c2 and ~ = c l -  c2. The quantity we must bound can then be written as 

<o(w)>~+a- (a(w))~ 

(o (W)  exp(6))~ 

(exp(6) )c  
- ( o ( w ) ) ~ .  

[ ( a ( W ) ) ~  + ( a ( W ) [ e x p ( 6 ) -  1] )~] 

[ ( e x p ( 6 ) -  1 ) c +  1] 
(o (W)) , .  (3.11) 

We are working in a Banach algebra, so 

oo 

[lexp (~ ) -111=  ~__ n lc5~ ~<exp(ll6[I)-I 
n 1 

By (3.8) we then have 

11 (exp(cS) - 1 ),lJ ~< []exp(6) =- 111 ~< exp(ll6ll) - 1 

822/59/1-2-14 
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The right side is less than 1 because [[6[]= [[cl-c2[]<1n2, so we can 
expand the denominator in (3.11) as follows: 

[1 + <exp(6)-  l > c ] - ~ =  ~ ( - 1 ) "  (<exp(6)-  l > y  
n = 0  

Thus (3.11) equals 

<a(W)>~ ~ ( - 1 ) " ( < e x p ( 6 ) -  l>c) n 
n = l  

+ (a(W)[exp(~5)- 1] )~ ~ ( - 1 )  ~ (<exp(6)-  1 )~)" 
n = 0  

The norm of this expression is 

~< ~ [exp(l l611)-l]"+[exp(I]611)-l]  ~ [-exp(H6[t)-l] ~ 
n = l  n = 0  

=~(ll611) 

The bound (3.10) follows from (3.9) because 

IO(cl)-O(c2)[ = I II<~o>c~ll- II <~o>c~11 I ~ I1<~o>~,-  <~o>~=]1 

To show that the c's with finite support and D(c) < 1 are dense in O, 
let c~O. Then C=Co+6, where Co has finite support and 
D(co)+e([l~H)< 1. Let 6n have finite support with []6n-fill--,0. Then by 
(3.10), D(co+~)~D(co)+e(n~n[]) .  Since ~([]~n[[)--* ~(t[6]]), D(co+f in)<l  
for sufficiently large n. Thus, Co + 6, a O for large n and co + 3n ~ c. 

The bound (3.9) and the density of the c's with finite support and 
D(c)< 1 imply that <g)  has a unique continuous extension to all of O. 
Moreover, (3.8) and (3.9) hold on O. QED 

Lemma 3.3. For Cl, c 2 with finite support and D(cl) < 1, D(c2) < 1, 
Ilcl--czl[ < ln2 ,  

[IaF(c~ ) - DF(c2)]W <~ e( p[ c~ - c 2 [[ ) (3.12) 

f2 I t f (cl)  - f(c2)ll ~< Ilcl - c211 dt [1 + ~(t Ilcl - c21[)] (3.13) 

Thus, F(c) has a unique continuous extension to O, and this extension is 
differentiable and satisfies (3.12) and (3.13). 
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Proof: 

~v ]OF(V, cl) ~?F(V, c2) 
W) 

~< Z I ( O o ) ( ( v + t )  A ( w \ { 0 } ) , c l )  
V,t: V 

- ( ~ o ) ( ( v + t )  A ( w \ { 0 } ) ,  c2)1 

= Y~ I (,~o)(U, c ~ ) -  (~o ) (U ,  c~)l 
U 

= II ( ~ o ) ~ 1 -  (~ro)c~lr 

~< ~(11 cl - c2 It) 

The norm [[DF(cl)-DF(c2)H is bounded by the supremum over W of the 
above, so (3.12) follows. 

The second inequality follows from 

F(Cl)-F(c2)= dt-~tF(c2+t(Cl-C2))  

f od tDF(ca+t (ca  c2))'(Cl c2) 

We can then bound ][DF(c2 + t(cl - c2))j[ by I[DF(c2)[[ + e(t ][Cl - c2[I). The 
extension to all of O is straightforward. QED 

We can now state and prove the main result of this section. 

T h e o r e m  3.4. Let D(c, rio) be given by Eq. (3.6) with fl = rio and 
e(r) by Eq. (3.7). If there exists an approximate fixed point Co for F(c, flo) 
such that 

rain r ~ I[F(co, flo)--Co[] < 1 (3.14) 
r 1 -- D(co, flo) -- e(r) 

then there exists e > 0 such that for I f l -  flo] < e, F(c, fl) has a fixed point 
c(fl). [It is understood that the minimum in (3.14) is only over r > 0 such 
that the denominator is positive.] Moreover, this family c(fi) of fixed 
points is differentiable in fl, and the free e n e r g y f ( ~ ,  c(fl), fl) is analytic in 
fi for I f l -  flo] < e. (flo can be complex and, by [fl - flo[ < e we mean an open 
disk in the complex plane.) 

Proof. We first show there is a fixed point for fi =flo. A standard 
argument for showing that there is a fixed point is to show that there is an 
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approximate fixed point Co, a positive number r, and a positive number p 
less than 1 such that 

IlDf(c, #o)11 ~p  

and 

for lie-coil ~ r  

l i E ( c o ,  r io)  - coil 
< r  (3.15) 

1 - p  

Lemma 3.1 and the bound (3.12) imply that 

IIDF(c o + 6,/3o)11 ~< D(co, /30) + e(II6H) 

Thus (3.14) implies (3.15). For /3 near /30 we use the same approximate 
fixed point Co. The quantities D(co,/3) and HE(co,/3)-Coll are both con- 
tinuous in/3. Thus there is an e > 0 such that (3.14) holds for ]/3-/3oJ < e, 
and so there is a fixed point for these values of/3. 

Let c'(/3) denote 

i OF 
(1 - DF(c, /3) ) -  - ~  (c(/3), /3) 

We show that dc(/3)/d/3 exists as a Frechet derivative and equals c'(/3). If A/3 
is a small real number, then c(/3)+ A/3c'(/3) should be a good approxima- 
tion to the solution c(/3 + 4/3) of the fixed-point equation F(c(/3 + Aft), 
/3 + Af t )=  c(/3 + Aft). Indeed, the techniques used above show that 

F(c(fl) + A/3c'(fl), /3 + Aft) - F(c(/3), /3) 

OF 
- AfiDF(c(fl),/3) c'(fl) - A/3 ~ (c(r),/3) 

is of order (Aft) 2. Using 

8F 
F(c(/3), /3) = c(/3) and DF(c(r) ,  r)  r + - ~  (c(r), /3) = c'(r) 

this implies 

liE(c(/3) + A/3c'(/3),/3 + Aft) - c(/3) - A/3c'(/3)]1 

is of order (Aft) 2. It follows that IIc(/3 + A f t ) - c ( / 3 ) -  A/3c'(/3)]l is of order 
(Aft) 2. Thus, de/d~3 exists and equals c'(/3). Recall from the end of Section 2 
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that the free energy per site is given by f(~3, c(fl),/3).It now follows that 
the derivative of the free energy with respect to fi exists and equals 

~f df ( ~ ,  c(fl), fi)= ~ ~?cOFv~ (~ ,  c(fl), fl) c'(V, fi) + - ~  (25, c(fl), fl) QED 
d/3 v: o ~ v , 

R e m a r k .  The above theorem does not address the question of the 
uniqueness of the fixed point. This appears to be a difficult question. We 
can, however, consider the following form of uniqueness. Suppose that 
(3.14) holds for all/3 < rio. When fl = 0, c = 0 is trivially a fixed point. Can 
we show that there is a unique continuous curve c(/3), /3<f10, of fixed 
points with c ( 0 )=0?  The answer is yes if we make some additional 
assumptions that can be checked numerically. The proof of the 
theorem shows that F(c,/3) is a contraction in a neighborhood of 
{c(/3): [/3-flo[ <e}.  Thus F(c,/3) cannot have two fixed points in this 
neighborhood. So we have a form of local uniqueness. Suppose that (3.14) 
holds for/31, cl and for f12, c2. Let el, e2 be the resulting e's and suppose 
the regions B 1 = {/3: ]fl--flll "~gl} and B2= {/3: [fl--fl2[ <~g2} overlap. The 
theorem implies that there are two continuous functions c1(/3) on B1 and 
c2(/3) on B 2 which are fixed points. We cannot conclude, however, that they 
agree on the overlap of B~ and B2. Suppose the overlap contains values of 
fi at which they agree and at which they do not agree. The continuity then 
implies that we can find values of/3 in the overlap at which they do not 
agree but Ilcl(fl)-c2(fl)l[ is as small as we like. Since F(c,/3) is a contrac- 
tion in a neighborhood of the overlap, it can have at most one fixed point 
in this neighborhood, and so we have a contradiction. Thus, if ci(fi) and 
c2(fl) agree at one point in the overlap, then they must agree everywhere 
in the overlap. The contraction property of F(c, fl) implies that to show 
that two fixed points are equal we need only show that they are sufficiently 
close. This can be checked numerically since we can bound the distance 
from these fixed points to the approximate fixed points cl and c2 and can 
compute II C l -  call. Thus, with extensive numerical checking we could prove 
that there is a differentiable curve c(/3) of fixed points for /3 < fl0 with 
c(0) = 0. (We have not attempted these numerical calculations.) Finally, we 
note that the above argument shows that there can be at most one such 
continuous curve with c (0 )=  0. 

We now turn to the problem of verifying (3.15). For  small /3 we can 
try c o --0 as the approximate fixed point. To check the above condition, we 
need a bound on D(c). Until now we have been suppressing the /3 
dependence of everything. We will now make it explicit by using a 
subscript, e.g., F~(c). Note that F~(c) = Fo(c +/3aoCrl + fiaoa_~). Thus 

Dss(O) = Do(/3r +/3aoa_l) <~ Do(0 ) + e(2/3) 
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by (3.12). Of course, Do(0 ) = 0, so 

IHDFp(0) il ~ D~(0) ~< e(2/~) = 2(e 2~ - 1 )/(2 - e 2~) 

Also, 

r 1 
<<" Jo dt IlDFo(t~aoal + t/~aoO-_l)ll 2/~ 

2~ f] dt 2(e 2~t-  1)/(2 - o2/i't ) 

After a little calculation we find that c 0 = 0  works for /3~<0.21/3c. 
[/?c = �89 log(1 + ~,~) = 0.4407.3 

For  larger values of/~ we use a computer  to find a better approximate 
fixed point. Our  approximate fixed point will have support in the set 
{ - 8 ,  - 7 ,  - 6  ..... 3, 4, 5}. If Co is supported on this set, then F(co) need not 
be. Writing F(co)=Zvc(V)a(V), we let Fr(co) denote the sum over only 
those V with support  in the above set. The finite-dimensional fixed-point 
equation FT(c0)= Co is then solved by iteration. The resulting Co is used as 
our approximate fixed point. We compute IlF(co)-Coll and II<ao>tl and 
then check condition (3.14). These numerical results are shown in Table I. 
We should point out that we do not use interval arithmetic in these 
calculations. For  /~<0.34=0.77/~c we see that the hypothesis of 
Theorem 3.4 is satisfied, and so we can conclude that there is a fixed point. 

In Table I we have included some values of/~ for which we cannot 
verify (3.14). For  some of these/3 the norm of DF at the approximate fixed 
point is greater than 1. Of  course this does imply that the fixed-point equa- 
tion does not have a solution or that F is not a contraction near this fixed 
point. It  does imply that the methods of this section will not work for all 
/3 less than/~c. In the next section we will modify the fixed-point equation 
in an at tempt to rectify this situation. We should remark that for these 
values of/~ with IIDF(co)ll > 1, we find numerically that the approximate 
fixed-point equation does have a solution and is a contraction near this 
fixed point. 

4. BETTER F I X E D - P O I N T  E Q U A T I O N S  

The numerical computations in Table I show that the simple norm of 
the previous section cannot be used to prove the existence of a solution to 
the fixed-point equation for /~ arbitrarily close to /3 c. We have not been 
able to find another norm in which we can bound ItDF(c),lt. In this section 
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Table I. Test of Hypothesis (3.14) of Theorem 3.4 for 
Different Values of 13 ~ 

21 3 

/3 I[F(c)- cll [[OF(c)ll (3.14) 

0.30 0.000403 0.712870 
0.31 0.000574 0.745147 
0.32 0.000815 0.778952 
0.33 0.001155 0.814541 
0.34 0.001633 0.852217 
0.35 0.002302 0.892331 
0.36 0.003230 0.935306 
0.37 0.004521 0.981624 
0.38 0.006298 1.031845 
0.39 0.008739 1.086598 
0.40 0.012065 1.146563 

0.043229 
0.077344 
0.144278 
0.286968 
0.630897 
1.652249 
6.327473 

~ The approximate fixed point c is computed using the sites -8,..., 5. The last column is the 
left side of (3.14). If it is less than 1, then Theorem 3.4 implies there is an exact solution of 
the fixed-point equation. 

we take a different approach.  We will sum several spins at once rather than 
just a single spin. This leads to a new fixed-point equat ion for which there 
is a family of  weighted l 1 norms that  can be used. For  example, we could 
sum out  a 2 by 2 block as shown in Fig. 3. We denote the block of  sites 
being summed out  by B. For  Fig. 3, B = {0, 1, 2, 3 }. The generalization of 
(3.2) is 

f(W)=N ' ~ a ( W ) l n f Z e x p l  ~ c(V) a(V)+H(~r)]} (4.1) 
o k ~ l B  k -V:  V n  B,ia @ 

The sum over o- ]B is over all spin configurations on the block B. (For  Fig. 3 
it is a sum over ~ro, o-1, ~2, a3.) The sum over cr is over all spin configura- 
tions on the sites outside the block B. Here H(a) is the appropr ia te  
generalization of the expression 3O-oCrl + /~aoa  i in Eq. (3.2). It contains 
the terms in the Hamit tonian  whose suppor t  intersects B but whose sup- 
por t  does not  contain any sites that  have already been summed out. In 
Fig. 3 we have indicated the eight terms which are included in H(o-) by 
drawing in the corresponding bonds. Of  course, (4.1) is meaningful only if 
c has finite support.  

The fixed-point equat ion will now involve shifts with respect to the 
block B rather than a single site. The appropr ia te  generalization of (2.11) 
is 

F(W,c, fl)= Z f(W+t,c, fl) 
t: W 
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0_ 6 o_ 5 

o_ 8 0_ 7 

Fig. 3. An example of the kink for the fixed-point equations of Section 4. The spins at sites 
0, 1, 2, and 3 will be summed over next. 

where t is summed over all shifts by multiples of B such that 
(i) B c~(W+ t ) =  Z ,  and (ii) W +  t has the same geometric shape as W. 

The fixed point equation is again given by (2.12). For Fig. 3 we have 
labeled the sites so that the shifts with respect to the block B are given by 
adding or subtracting a multiple of 4 to the site label. Thus, the sum over 
t in the above is just the sum over integer multiples of 4 subject to (i) 
and (ii). 

The advantage of summing out several spins at once is that we can 
now introduce several parameters in our norm and optimize our estimates 
with respect to these parameters. For each site i t  B let g~>~0. We then 
define #~ for all sites i by the requirement that #i be invariant under transla- 
tions with respect to B. For  Fig. 3 this means that/~i+4n = #~. The norm is 
defined as follows: 

Ibcll = Z  ie(W)l e 
w (4.2) 

, (w)=  Z ,i 
i ~ W  

The restriction that /~i~> 0 implies that we have a Banach algebra as 
follows: 
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Ilcd]l = ~ I(cd)( W)I e ~(W) 
W 

= E  e~(W/ E c(Xld(Y) I 
W X , Y : X ~  Y =  W 

Each #i>~0, so we have # ( W ) = # ( X A  Y)=#(X)+#(Y)-#(X~Y)<~ 
#(X) + #(Y). Thus, the above is bounded by HcU' Ud][. QED 

For  a function g of a we define 

( g ) = Z - l  ~ g(o- )exp[  ~ c(V) a(V)+H(a)l (4.3) 
alB V: V c ~ B r  

where Z is defined by ( 1 )  = 1. This expectation depends on c, and when 
we need to make this dependence explicit, we will write (g)~.. This expec- 
tation is a function of the ag with ir so there are numbers {g)(W) for 
each set W outside the block such that 

( g )  = 2 (g)(W) a(W) 
W: W ca B = ~;~ 

We then define 

][ (g ) l [  = ~ [ ( g ) ( W ) t  e ~IW) 
W: W c~ B - -  ;Z~ 

We then have the following bound on the norm of the Jacobian. 

Lemma 4.1. 

IIDF(c)II <~ max e -"<A) [] (a(A)) l [  (4.4) 
A : A c B ,  A ~ - ~  

Proof. With our weighted l I norm, the norm of DF(c) is easily 
shown to be bounded by 

IIOF(c)ll ~<supe ~(W)~v OF(V) w ~ e ~(V) (4.5) 

The sup over W and the sum over V are over all sets which contain at least 
one site in the block B and any number of sites outside of B (possibly 
none). We decompose W into the sites inside B and the sites outside 
B: W= A w D, A= W ~ B, D= W\ B. Then 

OF(V) ~ Of(V_+_t) 
&( w) ,% &( w) 

= ~ (a(A) a(D))(V+ t) (4.6) 
t: V 
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D is disjoint from the block B, so {a(A) a(D)) = ( a ( A ) )  a(D). Hence 

(a(A) a(D))(V+ t)= (a(A))(D & (V+ t)) 

OF(V) e~,(v) 
e ~(w)~v •c(W) 

<<.e-~(w)~ ~ I(a(A))(D /~ (V+t))l e ~(v) (4.7) 
V t : V  

Since V + t ) c D w [ D / ~  ( V + t ) ] ,  we have 

~(v)=u(v+ t)<~u(D)+~(D A (V+ t)) 

This inequality and the trivial equality / ~ ( W ) = # ( A ) + # ( D )  imply that 
(4.7) is 

<~e ~(A~ ~ I(a(A))(D A (V+t))[e~D~(V+,)) (4.8) 
V t : V  

In the sum over V and t: V, the set D & (V+  t) runs over all subsets of the 
set of sites outside the block. So the above is equal to e - u ( A )  H(o'(A))H. 
The lemma follows. QED 

We now define 

D ( c ) =  max e -~(A) H {a(A))][ (4.9) 
A : A c B ,  A ~ , ~ J  

The open set O is defined as in Section 3, except that we use the above 
definition of D(c). Equations (4.1) and (4.3) only make sense for c with 
finite support. The following lemma extends the definitions to all of O. 

Lemma 4.2. For any function g of a with /]gl[ < oo there is a 
unique continuous extension of ( g ) c  to all c e  O. For  any c e  O, 

]l (g)cH <~ Ilgll (4.10) 

and if Cl, c2~0 with I]cl-c2LI < l n 2 ,  then 

I I (g )c~ -  (g)c2[[ <~e(llcl-c2n)Ilgll (4.11) 

There is a unique continuous extension of F(c) to all of O. This extension 
is differentiable and if cl,  c2 e O with Ilcl- c211 < In 2, then 

IlDFfcl) - DFfcz)[I <~ e( llcl - c211) (4.12) 

1 

IlF(c~)-F(c2)l[ <~ IlCl-c~ll fo dt [1 +e(t Ilca- c~ll)] (4.13) 

where e(x) is defined by (3.7). 

Thus 
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Proofs.  As in Section 3, we first prove the estimates for c's with finite 
support. The definitions of {g}c,  DF(c), and F(c) and the above bounds 
then extend to all of O by continuity. To prove (4.10), it suffices to show 
II{~(W)}~II<~e "~W). As before, we let W = A u D  with A = W c ~ B ,  D =  
W \ B .  Then {~(W))~=  {~(A)}c ~(D). So 

II (~(w)~cll = ~ I ( ~ ( W )  ~c (v)[ e ~'(v) 
v 

= ~  l(~(A)>c ( V  A D)t e ~(v) 
v 

Since kt( V) <~ l~( V • D ) + #( D ) = #( V A D ) + kt( W) - #( A ), this is 

< ~  I ( G ( A ) ) c ( V  A D)I e ~(vAD)+~'(w~ u(A) 
v 

= e~(W)-~(x)II (a(A))cll ~< e ~(w) 

where we have used the fact that as V runs over all sets disjoint from B, 
so does V A D. The proofs of (4.11) (4.13) are virtually identical to the 
proofs of (3.9), (3.12), and (3.13) in Lemmas 3.2 and 3.3. QED 

Theorem 3.4 with D(c) given by (4.9) also holds for these new fixed- 
point equations. In Table II we check hypothesis (3.14) for a few values of 
/3. Finding the best choice of the weights/~o, /~1, /~2, /~3 is not trivial. The 
choices shown in Table II were made by searching for a minimum of 
IIDF(co)ll, and are probably not the best choices. The main point of 
Table II is to show that the freedom to choose the #i does indeed yield 
better bounds on IIDF(c)ll. Unfortunately, the 2 by 2 block involves more 
sites and hence more computation. In particular, for a fixed amount of 
computation the bound on IIF(co)- c011 will be larger for the 2 by 2 block 
than for the single-site block. This is the reason that the largest fl for which 

Table II. Test of Hypothesis (3.14) of Theorem 3.4 Using 
the Weighted Norm Defined in ( 4 . 2 )  a 

tiE(c) - ell I[DF(c)II (3.14) fro ffl ~2 ~3 

0.34 0.009569 0.699036 0.937822 0.000 0.325 0.188 0.537 
0.35 0.012706 0.756317 1.864607 0.000 0.288 0.163 0.475 
0.36 0.016503 0.821021 4.393333 0.000 0.250 0.125 0.425 

a The values of ff are given in the last four columns. The flexibility in the choice of # leads 
to a smaller bound on IIDF[I. The approximate fixed point was computed using sites from 
- 1 6  to 10 as labeled in Fig. 2. 
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we can verify the hypothesis of Theorem 3.4 with a single-site block is 
about the same as for the case of a 2 by 2 block. The important question, 
which we cannot answer, is whether or not for all /7 </7 C one can find a 
block size, a weighted norm, and an approximate solution such that 
Theorem 3.4 allows us to conclude that the fixed-point equation has a 
solution. 

5. CORRELATION F U N C T I O N S  

At first sight our approach appears to use translation invariance in 
such a strong way that there is no hope of defining the correlation func- 
tions in this approach. This is not the case, however, and in this section 
we show how to extract the correlation functions from the fixed-point 
equation. 

Until now only the sites shown in Fig. 2 occurred in the definition of 
F(c). We must now include sites to the right of those labeled in Fig. 2, so 
a slight change in notation is required. Sites will be labeled i =  (i~, i2), 
where il is a row index and i2 is a column index. The columns will have 
a kink in them, so that the sites in Fig. 2 will all have i2 = 0. 

To obtain the two-point function we add a small perturbation to the 
Hamiltonian, 

H=fl Z aiaj+~a,r~+, (5.1) 
( 6 )  s 

Here s is summed over all sites in the square lattice and ~ is small. The 
fixed-point equation for this new Hamiltonian is obtained by adding the 
term C~aoak to/TO-oO-1 +/Taoa 1 in Eq. (2.4). [We can assume without loss 
of generality that k2 ~> 0, i.e., k is to the right of the line in Fig. 2. The sub- 
scripts 0, 1, and - 1  should now be replaced by (0, 0), (1, 0), and ( - 1 ,  0).] 
The fixed point Z v c(V)o-(V) will now involve V's which are subsets of 
{(ia, i2): 0 ~< i2 ~<k2} �9 

Let Co be an approximate fixed point for /7=/7o for which the 
contraction mapping argument applies and  shows that there is an 
exact fixed point. As ~ -+ 0, IlF(c0,/70, ~) - Coil --> HN(c0,/70, 0 ) -  Coil and 
IIDF(c,/70, c~)ll --+ IIDF(c,/70, 0)ll. Hence, for sufficiently small c~ the contrac- 
tion mapping argument shows that the equation F(c,/70, e ) = c  has an 
exact solution. Furthermore, the resulting free energy is an analytic 
function of/7 and ~ for/7 close to/7o and ~ close to 0. 

Formally, the derivative of the free energy per site with respect to e at 
= 0 equals 

IAI -a  Z (OtOk+t) = ~O'00"k) 
t 
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by translation invariance. Thus, we define the correlation function (aoOk)  
to be the derivative of the free energy per site (as defined by the fixed-point 
equation) with respect to c~ at c~ = 0. As we have just argued, this derivative 
exists and is an analytic function of/~ for any value of fl for which the 
methods of Sections 3 and 4 show that the fixed-point equation has a 
solution. 

Unfortunately, this simple argument cannot establish the exponential 
decay of the truncated correlation functions. To do this, we must introduce 
a site-dependent magnetic field, i.e., add a term Z i  h/ri  to the Hamiltonian. 
(Truncated correlation functions are obtained by differentiating the free 
energy with respect to some of the h i and then setting all the hi equal to 
0.) The partition function for Fig. 2 will now depend on all the hi to the left 
of the line as well as the spins o. It appears that we have lost translational 
invariance in a serious way, and the arguments of Section 2 will no longer 
apply. This is not so. For example, after summing over o0, the partition 
function should be the same function of hi that the partition function before 
summing over 0o was of hr ,  where i '  is the translate of i by one lattice 
spacing. Thus, we have a fixed-point equation in which c is now a function 
not only of the spins oi, but also of the fields hi to the left of the line in 
Fig. 2. To establish the existence of a solution to this more complicated 
equation requires introducing a norm on this new space of c's. This can be 
done, but we will not pursue it here. 
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